Supersonic boundary layer transition induced by self-sustaining dual jets
Liu Qiang1, Luo Zhenbing1, †, Deng Xiong1, ‡, Liu Zhiyong1, 2, Wang Lin1, Zhou Yan1
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
China Aerodynamic Research and Development Center, Mianyang 621000, China

 

† Corresponding author. E-mail: luozhenbing@163.com badi_arg@126.com

Project supported by the National Natural Science Foundation of China (Grant Nos. 11602299, 11872374, and 51809271).

Abstract

To promote high-speed boundary layer transition, this paper proposes an active self-sustaining dual jets (SDJ) actuator utilizing the energy of supersonic mainflow. Employing the nanoparticle-based planar laser scattering (NPLS), supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel. Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process. The results reveal the transition control mechanisms that on the one hand, the jet-induced shear layer produces unstable Kelvin–Helmholtz instabilities in the wake flow, on the other hand, the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures, which gradually break down into turbulence downstream. The paper provides a new method for transition control of high-speed boundary layer, and have prospect both in theory and engineering application.

Reference
[1] Fedorov A 2011 Ann. Rev. Fluid Mech. 43 79
[2] Zhong X L Wang X W 2012 Ann. Rev. Fluid Mech. 44 527
[3] Fong K D Wang X W Zhong X L 2014 Comput. Fluids 96 350
[4] Tang Q Zhu Y D Chen X Lee C B 2015 Phys. Fluids 27 064105
[5] Berry S A Nowak R J Horvath T J 2004 34th AIAA Fluid Dynamics Conference 28 June–1 July, 2004 Oregon, Portland 2246 10.2514/6.2004-2246
[6] Wang X W Zhong X L 2009 Phys. Fluids 21 044101
[7] Yan H Gaitonde D 2010 Phys. Fluids 22 064101
[8] Wang X W Zhong X L 2008 38th Fluid Dynamics Conference and Exhibit 23–26 June, 2008 Washinfton, USA 3731 10.2514/1.37766
[9] André T Durant A Fedioun I 2017 AIAA J. 55 1
[10] Luo Z B Xia Z X Liu B 2006 AIAA J. 44 2418
[11] Zhao Y X Yi S H Tian L F Cheng Z Y 2009 Sci. Chin. Ser. E-Tech. 52 3640
[12] Zhang Q H Zhu T Yi S H Wu A P 2016 Chin. Phys. 25 054701
[13] Zhang Q H Yi S H He L Zhu Y Z Chen Z 2013 Chin. Phys. 22 114703
[14] Richard G H Jeff S N Russell L D 2001 J. Spacecr. Rockets 38 51
[15] Liu Q Luo Z B Deng X Wang D P Wang L Zhou Y Cheng P 2019 Acta Astronau. 164 262
[16] Yang S K Luo Z B Deng X Liu Q Wang L 2017 Proceeding of APCATS 2017 & AJSAE 2017 20–23 November, 2017 Beijing, China 387
[17] Sreenivasan K R 1991 Ann. Rev. Fluid Mech. 23 539
[18] Pirozzoli S Bernardini M Grasso F 2008 J. Fluid Mech. 613 205
[19] Yoshikawa J Nishio Y Izawa S Fukunishi Y 2018 Phys. Rev. Fluids 3 013904
[20] He L Yi S H Zhao Y X Tian L F Chen Z 2011 Chin. Sci. Bull. 56 489
[21] Kelso R M Smits A J 1995 Phys. Fluids 7 153
[22] Adrian R J Meinhart C D Tomkins C D 2000 J. Fluid Mech. 422 1
[23] Christensen K T Adrian R J 2001 J. Fluid Mech. 431 433